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Abstract. We propose a mechanism for the observed suppression of the two-dimensional (2D)
conducting phase when there is an in-plane magnetic field. We apply our approach, which is based
on the memory function formalism, to the spin-polarized electron system. This takes into account
both disorder and exchange–correlation effects. We show that spin polarization significantly favours
localization because of the enhancement of the exchange–correlations. A key outcome is that the
conducting phase for the fully spin-polarized system is suppressed. The in-plane magnetic field
needed to generate the fully spin-polarized state is of the order of 1 T and depends on the carrier
density. We determine the metal–insulator phase boundary for the unpolarized and polarized
systems, and we estimate the dependence of the critical magnetic field on carrier density.

1. Introduction

Even though the existence of a metal–insulator transition for two-dimensional electron systems
[1] has been known of for several years, the nature of the insulating and metallic states near
the transition is still a puzzle. In the presence of a magnetic field which is perpendicular to the
electron plane, the familiar quantum Hall states are recovered [2]. This is due to the dominant
contribution of orbital effects in the magneto-conductance. If the magnetic field is parallel to
the electron plane it can only couple directly to the electron spin. Recent experiments [3–5]
have reported that a weak parallel magnetic field is sufficient to destroy the conducting phase,
making the system insulating. The critical magnetic field needed varies with the carrier density
but is of the order of 1 T for both Si and GaAs.

At the relatively high densities found in conventional metals and semiconductors the
electron correlations resulting from mutual Coulomb repulsion are not important because the
average interaction energies are much smaller than the Fermi energies. Thus the transport
properties of conventional metals and semiconductors are well accounted for by the standard
nearly free-electron picture. However, without electron repulsion the 2D system would always
be insulating in the presence of disorder [6], so it is clear that to treat the metal–insulator
transition we must look beyond this picture. At low electron densities the Fermi energy is
small and the correlations start to dominate. Strong electron correlations drive the system to
an insulating state (the Wigner crystal) even in the absence of any disorder when the electron
density is sufficiently low [7]. The fact that the metal–insulator transition occurs at higher
densities than the predicted Wigner transition has been interpreted as the additional effect of
electron–defect interactions. Defects reduce the mobility of the electrons thus making them
easier to localize. However, the nature of the insulating state at low densities in the presence
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of low levels of disorder remains an unresolved issue and one which needs to be resolved if
the metal–insulator transition is to be understood.

In contrast with the impurity-driven Anderson or independent-particle localization,
Wigner-crystal-type localization is a phenomenon driven by the correlations between electrons.
Due to the correlations, in each Wigner–Seitz cell there is one electron surrounded by a region
of zero electron density as if the electron had a hard repulsive core. The complete density
profile of the exchange–correlation hole is given by the two-electron correlation function g(r).
This function has been determined by diffusion quantum Monte Carlo numerical simulations
(DQMC) of the pure electron system without imperfections in the substrate [7, 8]. The
simulations have determined that the Wigner crystal melts at rs � 35 and that when the
electron density is increased the radius of the hard core in the exchange–correlation hole
shrinks continuously. rs is the dimensionless measure of density, equal to the average electron
spacing in units of effective Bohr radii. There is a hard core for all densities rs � 7, a density
25 times higher than the density at the Wigner transition.

Wigner localization has close parallels with the close-packing solidification of charged
hard spheres where the dominant mechanism for the solidification arises from fluctuations in
the density variable. We have shown that when there are low levels of defects, electron local-
ization at low electron densities is still driven by the electron correlations [9]. The impurities
act as pinning centres and facilitate the localization. There is no long-range order when there
is disorder and the electron solid is a frozen glass with liquid-like short-range order. We have
found in the range of electron densities rs � 10 that weak substrate disorder causes a glass
transition.

The DQMC numerical simulations establish that the exchange–correlation hole is stronger
for spin-polarized electrons than for unpolarized electrons. This is because there is additional
exchange for the polarized system between the increased number of parallel-spin electrons.
For at least rs � 20 the ground state continues to be the unpolarized electron liquid [8],
but from rs > 10 the free energies for the spin-polarized state are very close to the free
energies for the unpolarized state. Thus the Zeeman energy gain from a relatively weak
parallel magnetic field should produce a fully polarized ground state. The polarized state is
more likely than the unpolarized state to be in the insulating state because of the enhancement in
the exchange–correlation hole. We are proposing this as the mechanism for the destabilization
of the conducting phase by parallel magnetic fields.

We focus here on the localization of polarized and unpolarized strongly correlated systems
in the presence of weak disorder. As we move away from the limit of very strong correlations
where the density fluctuations ρq(t) = ∑

k<kF
a

†
k+q(t)ak(t) cause Wigner localization, then to

leading order the basis set continues to be the density fluctuations. In our formalism, defect
scattering is incorporated in such a way that the Ward identities and particle conservation are
satisfied within this density basis. By restricting the basis to density fluctuations we average
over phase information of processes where the particles and holes propagate independently,
and thus exclude the possibility of Anderson localization which is not found in the limit of low
densities.

2. Theory

We discuss the metal–insulator transition through the density correlation function 〈ρq(t)ρ0(0)〉
which provides the time dependence of the decay of the density fluctuations. In the liquid phase
〈ρq(t)ρ0(0)〉 goes to zero when t → ∞ because of the propagation of the diffusive mode. In
the glass phase the diffusion constant is zero, so if we approach the glass transition the decay
of density fluctuations becomes very slow and eventually stops. The local structure and local
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density fluctuations no longer vanish when t → ∞, and 〈ρq(t)ρ0(0)〉 does not go to zero.
A narrow quasi-elastic peak builds up in the dynamic structure factor S(q, ω), so S(q, ω)
develops a singularity at zero frequency.

We have previously established that strong correlations in the presence of weak disorder
in the substrate can localize the electrons into a glassy state [9]. We have obtained good agree-
ment with the position of the metal–insulator transition in zero magnetic field for unpolarized
electrons [10]. In our approach we search for the metal–glass transition using the Kubo-
relaxation function

�ν(q, t) ≡ 〈Nq(t)|N0(0)〉. (1)

This determines the relaxation of the normalized dynamical density fluctuations for polarization
ν, Nq(t) = ρq(t)/

√
χν(q), as a function of time. When the index ν = p the system is fully

spin polarized while ν = u is for the unpolarized system. χν(q) is the corresponding static
susceptibility.

We are interested in the dynamics of relaxation processes as t → ∞. The order
parameters for the glassy states are given by the limiting form of the relaxation function,
fν(q) = limt→∞�ν(q, t). The Laplace transform of �ν(q, t) is

�ν(q, z) =
(
Nq

∣∣∣∣ 1

L − z
∣∣∣∣Nq

)
(2)

and the corresponding long-time limit of �ν(q, t) is

fν(q) = − lim
z→0

z�ν(q, z). (3)

When fν(q) is non-zero, spontaneous fluctuations do not decay even at infinite time and the
system becomes a frozen electron glass. In the conducting phase, fν(q) is identically zero
since the density fluctuations decay to zero.

The Liouvillian L in equation (2) is for the Hamiltonian

H =
∑
k

εka
†
kak +

1

2

∑
q

V (q)ρqρ−q +
∑
q

U(q)ρ−q . (4)

εk = h̄2k2/2m! is the single-particle kinetic energy, ρq = ρq(0), V (q) is the Coulomb
interaction between electrons, and U(q) is the defect potential.

We now introduce a subspace of the dynamical variables which spans the slowly varying
dynamical variables of the system. In our case this consists of all the density fluctuations.
Using the equation of motion for the density fluctuations, we can express�ν(q, z) in terms of
force–force relaxation functions Mν(q, z). Using mode-coupling theory the Mν(q, z) can be
approximated by linear and bi-linear products of the�ν(q, z). The result is a set of non-linear
equations which self-consistently calculate the fν(q).

The projection operators

P = |Nq)(Nq | P̄ = 1 − P
J = ∣∣LNq) 1(LNq ∣∣LNq)

(LNq ∣∣ J̄ = 1 − J (5)

project all dynamical variables onto the subspace spanned by density fluctuations |Nq), and
current-density fluctuations |LNq), respectively. P and J satisfy the identities (see, for
example, reference [11])

P =
[
PLP − z− PLP̄ 1

P̄LP̄ − z P̄LP
]
P 1

L − zP (6)

J =
[
J L̃J − z− J L̃J̄ 1

J̄ L̃J̄ − z J̄ L̃J
]
J 1

L̃ − zJ . (7)
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Here L̃ ≡ P̄LP̄ is the reduced Liouvillian in the density subspace. Taking a scalar product of
equation (6) with the density fluctuation |Nq) we obtain

1 =
[
(Nq |PLP|Nq)− (Nq |z|Nq)−

(
Nq

∣∣∣∣PLP̄
∣∣∣∣ 1

P̄LP̄ − z

∣∣∣∣P̄LP
∣∣∣∣Nq

)]

× (Nq |P|Nq)
(
Nq

∣∣∣∣ 1

L − z
∣∣∣∣Nq

)
(Nq |Nq). (8)

Using the definition of �ν(q, z) we get

�ν(q, z) = − 1

z +Kν(q, z)
(9)

where the current relaxation function

Kν(q, z) =
(

LNq
∣∣∣∣ 1

L̃ − z

∣∣∣∣LNq
)

(10)

describes the relaxation of the current fluctuation variable |LNq). For notational brevity we now
drop the polarization index ν except where it is explicitly necessary. In deriving equation (9)
we have used (Nq |L|Nq) = 0 and P̄L|Nq) = |LNq). Both of these relations are the result of
time-reversal symmetry.

Taking a scalar product of equation (7) with current fluctuation |LNq) we get

(LNq |J |LNq) =
(
NqL

∣∣∣∣
[
J L̃J − z− J L̃J̄ 1

J̄ L̃J̄ − z J̄ L̃J
]∣∣∣∣LNq

)

× 1

(LNq |J LNq)

(
LNq

∣∣∣∣ 1

L̃ − z

∣∣∣∣LNq
)
. (11)

Solving for K(q, z) we obtain

K(q, z) = − $q

z +M(q, z)
(12)

where

$q = (LNq |LNq) = χ−1(q)(Lρq |Lρq) = χ−1(q)(q2/m).

We have used J |LNq) = |LNq), and (LNq |L̃|LNq) = 0, once again the result of time-reversal
symmetry. The force–force relaxation functionM(q, z) describes the relaxation of the reduced
force variable |P̄L2ρq). Using P|LNq) = 0 and |J̄ L̃LNq) = |P̄L2Nq),M(q, z) reduces to

M(q, z) = m

q2

(
P̄L2ρq

∣∣∣∣ 1

J̄ L̃J̄ − z

∣∣∣∣P̄L2ρq

)
. (13)

One needs to determine |P̄L2ρq) for our Hamiltonian (equation (4)). Using the equation of
motion for ρq

L2ρq = 1

2m

∑
k

[q2 + 2q · k]a†
q+kak +

1

m

∑
k

V (k)(q · k)ρkρq−k +
1

m

∑
k

U(k)(q · k)ρq−k

(14)

equation (13) becomes

M(q, z) = 1

mq2

([∑
k

V (k)(q · k)ρkρq−k +
∑
k

U(k)(q · k)ρq−k

]
P̄

∣∣∣∣ 1

J̄ L̃J̄ − z

∣∣∣∣P̄
×

[∑
k

V (k)(q · k)ρkρq−k +
∑
k

U(k)(q · k)ρq−k

])
. (15)
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For weak scattering from defects we neglect the cross terms in equation (15), obtaining
the expression

M(q, z) = Mee(q, z) +Mde(q, z) (16)

where Mee(q, z) is the contribution from electron–electron scattering and Mde(q, z) is the
contribution from electrons scattering from defects. Mde(q, z) is a two-point density relaxation
function:

Mde(q, z) = 1

mq2

∑
kk′

(
U(k)(q · k)ρq−kP̄

∣∣∣∣ 1

J̄ L̃J̄ − z

∣∣∣∣P̄ρq−k′U(k′)(q · k′)
)

(17)

which we approximate as

Mde(q, t) = 1

mq2

∑
kk′

〈
(U(k)(q · k)U(k′)(q · k′)

〉
(ρq−k(t)|ρq−k′(0))

= ni

mq2

∑
k

U 2(k)(q · k)2χ(|q − k|)�(|q − k|, t). (18)

Mee(q, z) is a four-point relaxation function given by

Mee(q, z) = 1

mq2

∑
kk′

(
V (k)(q · k)ρkρq−kP̄

∣∣∣∣ 1

J̄ L̃J̄ − z

∣∣∣∣P̄ρk′ρq−k′V (k′)(q · k′)
)
. (19)

One customarily proceeds from this point by factorizing four-point density correlation
functions as products of two-point correlation functions. For a classical system this implies
that the four-point relaxation functionMee(q, z) in equation (19) can also be factorized, since
the relaxation and correlation functions are equivalent, but this does not automatically follow
in a quantum system since the two functions are not identical except in the high-temperature
limit, 〈A|B〉ω = (1 − e−βh̄ω)(h̄ω)−1(A|B)ω. In order to identify the transition, however,
we only need the limit ω → 0. Since in this limit the two functions are identical, we can
factorize the quantum four-point relaxation function in terms of two-point relaxation functions.
Equation (19) then becomes

Mee(q, t) = 1

mq2

∑
kk′

〈
V (k)(q · k)V (k′)(q · k′)

〉

×
[〈
ρk(t)ρk′(0)

〉 〈
ρq−k(t)ρq−k′(0)

〉
+

〈
ρk(t)ρq−k′(0)

〉 〈
ρq−k(t)ρk′(0)

〉]
= 1

mq2

∑
kk′

〈
V (k)(q · k)V (k′)(q · k′)

〉

×
[
�(k,k′, t)χ(k,k′)�(q − k, q − k′, t)χ(q − k, q − k′)

+ �(k, q − k′, t)χ(k, q − k′)�(q − k,k′, t)χ(q − k,k′)
]
. (20)

For t → ∞ (or equivalently for limz→0), equations (16), (18), and (20) become

M(q) ≡ Mee(q) +Mde(q)

Mee(q) = 1

2mq2

∑
q ′

[
V (q ′)(q · q′) + V (|q − q′|)(q · (q − q′))

]2

× χ(q ′)f (q ′)χ(|q − q′|)f (|q − q′|)
Mde(q) = ni

mq2

∑
q ′
U 2(q ′)(q · q′)2χ(|q − q′|)f (|q − q′|).

(21)



4488 J S Thakur and D Neilson

0 1 2 3 4 5 6
q/kF

0.2

0.4

0.6

0.8

1.0

f ν(
q)

rs= 9

12.0

10.2

9.39

Unpolarized

9.38

(a)

0 1 2 3 4 5 6
q/kF

0.2

0.4

0.6

0.8

1.0

f ν(
q)

rs = 10

6.92

5.88

10.4

17.3 Unpolarized

5.87

(b)

Figure 1. Order parameters fν(q) for rs = 9 and 10. Curve labels are in-plane impurity densities
ni in units of 109 cm−2. (a) Unpolarized; rs = 9. fu(q) = 0 when ni < 9.39 × 109 cm−2.
(b) Unpolarized; rs = 10. fu(q) = 0 when ni < 5.88 × 109 cm−2. (c) Fully polarized; rs = 9.
fp(q) = 0 when ni < 2.56 × 109 cm−2. (d) Fully polarized; rs = 10. fp(q) = 0 when
ni < 0.69 × 109 cm−2.
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Figure 1. (Continued)

Using equations (3), (9), and (12), we write the order parameter fν(q) in terms ofMν(q):

fν(q) = 1

1 +$q/Mν(q)
. (22)
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Mν(q) itself depends on fν(q), and so combining equations (21) and (22) leads to a closed
set of non-linear equations for fν(q). We solve these iteratively until the solutions are self-
consistent.

The electron correlations are taken into account through the static susceptibilities χν(q)
in the vertex part of the memory function (equation (21)). The χν(q) feed in the information
about exchange and correlations. We have previously established that the key property inχν(q)
determining the transition is the size of the area occupied by the total density exclusion region
in the centre of the exchange–correlation hole. We assume here when the electron correlations
are strong that the shape of the exchange–correlation hole is not greatly affected when there
are low levels of disorder. We take χν(q) from the DQMC static structure factor S(q) [7, 8].
We introduce the static local field factor Gν(q) which we determine using

Sν(q) =
∫ ∞

0
dω

χ(0)ν (q, iω)

1 + V (q)[1 −Gν(q)]χ(0)ν (q, iω)
. (23)

The Gν(q) then determine χν(q) using (see reference [12])

χν(q) = χ(0)ν (q){1 + V (q)[1 −Gν(q)]χ(0)ν (q)}−1. (24)

χ(0)ν (q) is the Lindhard function for non-interacting electrons. The level of disorder is measured
in terms of the scattering rate γν for carriers scattering from the defects. We evaluate γν [10]
using the memory function formalism [13], and from this we determine the conductivity at the
transition using the Drude relation.

3. Results

In figure 1 we show the order parameters fν(q) determined from equations (21) and (22)
for the polarized and unpolarized states for a range of impurity densities ni . We consider
scattering off monovalent Coulomb impurities randomly distributed in the carrier plane so
that, in equation (21), U(q) = 2πe2/(εq). When ni is less than a critical density, fν(q) is
zero, indicating a conducting phase. The present formalism provides no further information
about its nature. fν(q) = 0 is equally consistent with a conducting phase which is a Fermi
liquid or a conducting phase which is a superconductor (see reference [14]). At the critical ni ,
we find the order parameter fν(q) jumps discontinuously, indicating a transition to an insulator
which is a frozen glass state [9]. The key point here is that for fixed rs the critical impurity
density is much smaller for the fully polarized system than it is for the unpolarized system.

We have determined the critical ni as a function of the carrier density for both the polarized
and unpolarized cases. Figure 2 shows the resulting phase boundaries between conductor and
insulator. We have established that the conducting phase does not persist below rs = 8 [10].
The conducting phase for the fully polarized system which is represented by the shaded region
is restricted to a small range of rs below rs � 10. The conducting phase exists only for small
levels of disorder. For the unpolarized system at the same rs the critical level of disorder is
significantly greater, and the conducting phase extends to much larger values of rs . The hatched
region represents the reduction in the conducting phase region when going from the unpolarized
to the fully polarized system. Figure 2 thus shows that fully spin polarizing the system
destabilizes the conducting phase except within a very small range of carrier densities. The
stable conducting phase is restricted to very small levels of disorder. This significant shrinkage
of the conducting region is associated with the enhancement of exchange–correlations for the
fully polarized system. This enhancement favours localization.

We propose that the disappearance of the conducting phase in the presence of an in-plane
magnetic field is associated with polarization of the carrier spins. At these low carrier densities
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9 10 11 12 13
rs

1

3

5

7

n i (
10

9 cm
−

2 )

Figure 2. Phase boundaries between conducting and insulating states for unpolarized (solid line)
and fully polarized systems (dashed line). Axes are impurity density ni and electron rs . For a
fully polarized system the shaded region is conducting, and the remaining area is insulating. For
an unpolarized system the conducting phase is the hatched region, which includes the shaded area,
and the remainder is insulating.

the energy cost for spin-aligned states becomes small and a weak magnetic field is sufficient to
fully polarize the electrons. DQMC simulations [8] have found that the ground-state energies
Ep and Eu for the fully polarized and unpolarized systems respectively differ by only a small
amount for densities below rs � 10. From the Ep and Eu we can calculate the critical
magnetic field Hc needed to change the unpolarized ground state into a fully spin polarized
state. We equate the Zeeman energy splitting at the critical fieldHc with the energy difference
Hc = (Ep −Eu)h̄/(gµB). We use (gσz) = 1.1 for holes in GaAs, taken from reference [15].

Hamilton et al [5] reported for a GaAs sample with hole density ps corresponding to
rs = 9 that a magnetic field � 0.7 T drives the conducting state to an insulator. We find that at
rs = 9 the critical magnetic field needed to fully polarize the system is Hc = 0.6 T, which is
very close to this value. For electrons in Si MOSFETs the values of effective mass and (gσz)
are not very different from those for holes in GaAs. The value of Hc = 0.5 T in Si measured
by Simonian et al [3] at rs = 9 is again in good agreement with our value.

We find at rs = 9 that the critical disorder level needed to drive the fully polarized system
to the insulating state corresponds to a conductivity of σ � 4.5e2/h. This is consistent with
the measured value at the transition of σ � 5e2/h for rs = 9 [5]. Figure 2 shows the effect
of spin polarization on the phase boundary for an impurity concentration corresponding to
σ = 5e2/h. The value of rs at the phase boundary decreases when the system goes from the
unpolarized to the fully spin-polarized state. It drops from rs = 11.5 to rs = 9.2.

Reference [5] determines the metal–insulator phase boundary as a function of hole density
ps and critical magnetic field Hc. To compare with the experimental points we use a linear
interpolation between ps and Hc to determine the critical magnetic field as a function of hole
density (solid line). Figure 3 compares the experimental points with our calculated Hc. We
find reasonable agreement.
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Figure 3. The dependence of the critical magnetic field for the metal–insulator transition in GaAs
on the hole density ps (solid line) for impurity density corresponding to σ = 5e2/h. Points are
experimental data taken from Hamilton et al [5].

In conclusion, we have demonstrated that magnetic fields ∼1 T should be sufficient to
fully spin polarize the carriers for rs > 8 and we have shown that the enhanced exchange–
correlations for the fully polarized system significantly favour the insulating phase. Our
mechanism leads to results which are in reasonable quantitative agreement with experiment.
Figure 2 predicts a re-emergence of a conducting phase for the fully polarized system at very
small levels of disorder for a narrow range of carrier densities.
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